Human performance assessment using fNIR

نویسندگان

  • Il-Young Son
  • Markus Guhe
  • Wayne D. Gray
  • Birsen Yazici
  • Michael J. Schoelles
چکیده

We explore the utility of functional Near Infra Red (fNIR) technology in providing both empirical support and a basis for assessing and predicting dynamic changes in cognitive workload within the theoretical context of computational cognitive modeling (CCM). CCM has had many successes and in recent years has expanded from a tool for basic research to one that can tackle more complex real-world tasks. As a tool for basic research it seeks to provide a model of cognitive functionality; as a tool for cognitive engineering it seeks applications in monitoring and predicting real-time performance. With this powerful theoretical tool we combine the empirical power of fNIR technology. The fNIR technology is used to non-invasively monitor regional hemodynamic activities, namely blood volume changes and oxygenation dynamics. We examined a simple auditory classification task in four different workload conditions. We monitored the blood activity in the prefrontal cortex region of the frontal lobe during the performance of the task to assess the patterns of activity as workload changes. We associated patterns of model activity with patterns of the hemodynamic data. We used ACT-R for creating the computational cognitive model. For the fNIR analysis, we used a generalized linear regression model along with time series clustering. We found that in the highest workload condition the model predicts a cognitive ‘overload’, which correlated well with the fNIR cluster and classification analysis, as this condition differs significantly from the other three conditions. Linear regression on a subset of the data where workload increases monotonically shows that apart from the overload condition, there was a positive relationship between increase in workload and increase in blood volume activation. In addition, individual variations in hemodynamic response suggest that individuals differ in how they process different workload levels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Brain Activity to Predict Task Performance and Operator Efficiency

The efficiency and safety of many complex human-machine systems are closely related to the cognitive workload and situational awareness of their human operators. In this study, we utilized functional near infrared (fNIR) spectroscopy to monitor anterior prefrontal cortex activation of experienced operators during a standard working memory and attention task, the n-back. Results indicated that t...

متن کامل

Optical brain monitoring for operator training and mental workload assessment

An accurate measure of mental workload in human operators is a critical element of monitoring and adaptive aiding systems that are designed to improve the efficiency and safety of human-machine systems during critical tasks. Functional near infrared (fNIR) spectroscopy is a field-deployable non-invasive optical brain monitoring technology that provides a measure of cerebral hemodynamics within ...

متن کامل

Monitoring Mental Fatigue in Analog Space Environment Using Optical Brain Imaging

Accurate assessment of mental fatigue level would improve operational safety and efficacy of astronauts for long-term space flight. Identification of neurophysiological markers can index impending overload or fatigue before performance decrements using neuroimaging technologies. The current study utilized functional near-infrared spectroscopy (fNIR) to investigate the relationship of hemodynami...

متن کامل

Applying Functional Near Infrared (fNIR) Spectroscopy to Enhance MIS Research

Dennis Galletta was the accepting Senior Editor. Gefen, David; Ayaz Hasan; Onaral, Banu (2014) “Apply Functional Near Infrared (fNIR) Spectroscopy to Enhance MIS Research,” AIS Transactions on Human-Computer Interaction, (6) 3, pp. 55-73.

متن کامل

Using MazeSuite and Functional Near Infrared Spectroscopy to Study Learning in Spatial Navigation

MazeSuite is a complete toolset to prepare, present and analyze navigational and spatial experiments. MazeSuite can be used to design and edit adapted virtual 3D environments, track a participants' behavioral performance within the virtual environment and synchronize with external devices for physiological and neuroimaging measures, including electroencephalogram and eye tracking. Functional ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005